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A discrete stochastic process involving random amplification with additive noise is studied analytically. If
the non-negative random amplification factorb is such that̂ bb&51, whereb is any positive noninteger, then
the steady state probability density function for the process will have power law tails of the formp(x)
;1/xb11. This is a generalization of recent results for 0,b,2 obtained by Takayasu, Sato, and Takayasu
@Phys. Rev. Lett.79, 966~1997!#. It is shown that the power spectrum of the time seriesx becomes Lorentzian,
even when 1,b,2, i.e., in the case of divergent variance.@S1063-651X~99!10306-4#

PACS number~s!: 05.40.2a, 02.50.2r, 05.70.Ln, 61.10.Eq
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A power law behavior of the distribution function i
widely observed in nature@1#. Recently, Takayasu, Sato, an
Takayasu presented a general mechanism leading to
power law distribution@2#. They analyzed a discrete stocha
tic process which involves random amplification togeth
with additive external noise. They clarified necessary a
sufficient conditions to realize a steady power law fluctuat
with divergent variance using a discrete version of the lin
Langevin equation expressed as

x~ t11!5b~ t !x~ t !1 f ~ t !, ~1!

where f (t) represents a random additive noise, andb(t) is a
non-negative stochastic coefficient. They derived the follo
ing time evolution equation for the characteristic functi
Z(r,t), which is the Fourier transform of the probabilit
densityp(x,t):

Z~r,t11!5E
0

`

W~b!Z~br,t !dbF~r!, ~2!

whereW(b) is the probability density ofb(t), andF~r! is
the characteristic function forf (t). They showed that when
^bb&51 holds for 0,b,2, the second moment^x2(t)& di-
verges ast→`, but Eq.~2! has a unique steady and stab
solution

lim
t→`

Z~r,t ![Z~r!512const3urub1¯ , ~3!

which yields the power law tails in the steady probabil
density
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lim
t→`

p~x,t ![p~x!;1/xb11, ~4!

or equivalently, the cumulative distribution

P~>uxu!;1/xb. ~5!

They also made numerical simulations of Eq.~1! by em-
ploying a discrete exponential distribution forW(b), and
showed that the theoretical estimate of the relation betw
b and the parameters specifyingW(b) @Eq. ~15! in Ref. @2##
nicely fits with the simulation ‘‘even out of the range o
applicability, b.2.’’ They stated that ‘‘the reason for thi
lucky coincidence is not clear,’’ although they pointed out
the same time that the power law distribution tails are
generic property of Eq.~1! @2#. In this Brief Report, the
following two statements will be presented.

~a! The theory of Ref.@2# can be straightforwardly ex
tended forb.2: If ^bb&51 holds for a positive nonintege
b, then there exists a unique steady and stable solution of
~2!,

Z~r!5 (
m50

n

A2m~21!2mr2m2Curub1O~r2n12!, ~6!

where 2n is the largest even number that is smaller thanb.
This Z(r) leads top(x);1/xb11.

~b! When ^bb&51 for a nonintegerb between 1 and 2,
the power spectral density~PSD! of x(t) is Lorentzian, in-
creasing with the observation timeT as

S~v,T!;
2

T

x0
2

ln^b2&

~1/t1!^b2&T

~1/t1!21v2 for T@1, ~7!

where
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x0
2[^x2~0!&1

^ f 2&

^b2&21
, ~8!

t15
1

ln^b2&1 ln@1/̂ b&#
. ~9!

From statement~a!, ‘‘the coincidence’’ found in Ref.@2#
is naturally understandable. To prove~a!, we assume the fol-
lowing form for Z(r):

Z~r!5 (
n50

`

anrn1urub (
n50

`

cnrn, a0[1, ~10!

and substitute it into Eq.~2! in the limit t→`. If F~r! is an
even function@i.e., the distribution function off (t) is sym-
metric as assumed in Ref.@2##, we can first prove thata1
50 because^b&Þ1. Also, c150 because^bb11&Þ1.
Thanks toa2m2150 and^b2m11&Þ1, a2m1150 is derived.
Similarly, c2m2150 and^bb12m11&Þ1 yield c2m1150. We
can thus prove thatan andcn in Eq. ~10! vanish for all odd
numbersn, i.e., Eq. ~6! holds. @Note that thenth moment
^xn(t)& with n.b diverges not only for even numbern but
also for odd number which corresponds to the vanishing
efficient an .# Taking exactly the same procedures as in R
@2#, we can prove that this solution is unique and stable
case ofb.2, we have a finite variance but higher ord
moments:̂ xn(t)&, with n.b, diverge ast→`.

To derive the probability densityp(x), we only need to
assume that allkth derivatives ofZ(r) satisfy the boundary
condition

lim
r→6`

dkZ~r!/drk50. ~11!

Using Eq.~11!, we can partially integrate the expression
on

o-
-
f.
n

p~x![
1

2p E
2`

`

eixrZ~r!dr ~12!

@b#11 times, where@b# is the largest integer that is smalle
thanb. Thus we obtain the asymptotic expansion as

p~x!;uxu2~b11!E
2`

`

e2 i jujub2@b#21dj

;uxu2~b11!G~b2@b#!, ~13!

whereG is theg function.
To prove statement~b!, we note that the two-time corre

lation function is rigorously obtained from Eq.~1!:

f~t,t ![^x~ t1t!x~ t !&5^x2~ t !&^b&t, ~14!

where

^x2~ t !&5^b2& t^x2~0!&1
12^b2& t

12^b2&
^ f 2&. ~15!

If 1 ,b,2, we have a relation 0,^b&,1,^b2& because
the functionG(g)[^bg& satisfiesG(0)51 and G9(g).0
@2#. Thenf increases witht, but decays witht as ;e2t/t0

for any fixed value oft ~Debye-type relaxation!, with the
relaxation time

t05
1

ln@1/̂ b&#
. ~16!

Since the correlation function depends on botht and t, the
Wiener-Khinchin relation cannot be used to obtain the PS
Defining the PSD which depends on the observation timT
as
S~v,T![K U E
0

T

eivtx~ t !dtU2L Y T52 ReH E
0

T

dtE
0

T2t

dteivt^x~ t1t!x~ t !&J Y T, ~17!
any

o

r
two
in

ale
use,
and usingf(t,t) obtained above, we arrive at expressi
~7!. The spectrum is of 1/f 2 type for f @1/t1 and flat for f
!1/t1 . Equation~7! implies that the power increases exp
nentially with the observation timeT, which corresponds to
the divergent behavior of the variance^x2(t)&. @We have
neglected the case 0,b,1, where even the average ofx
diverges aŝx(t)&5^b& t^x(0)& becausêb&.1.#

When b.2, both 0,^b&,1 and 0,^b2&,1 hold, and
results are rather trivial:

^x2&[ lim
t→`

^x2~ t !&5
1

12^b2&
^ f 2&, ~18!

f~t![ lim
t→`

f~t,t !5^x2&^b&t, ~19!
S~v![ lim
T→`

S~v,T!52^x2&
~1/t0!

~1/t0!21v2 . ~20!

Thus, as far as the PSD is measured, we cannot observe
singular aspect, higher order singularities being hidden.

The stochastic process described by Eq.~1! generally
leads to the power law behaviorp(x);1/xb11, while it also
yields a Lorentzian spectrumS(v)}1/@(1/t)21v2#. A col-
ored noise, or 1/f a fluctuation, whose PSD is proportional t
1/va, has attracted much attention since 1/f noise was dis-
covered several decades ago@3#. Such a power law behavio
of the PSD is also observed widely in nature, and these
power laws, one in the probability density and the other
the PSD, are sometimes discussed together@2#. Therefore it
is interesting to know whether an extremely long time sc
t can be involved in the present stochastic process. Beca
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in that case, the observation timeT, which relates to the low
frequency cutoffv052p/T, cannot reach this time scale
then a 1/f 2 fluctuation; that is,S(v);1/v2 ~for v>v0! is
observedpractically.

One can immediately see that the time constantt0 or t1
becomes large in very limited cases. First, the averageb
should be close to unity, i.e.,^b&512e with 0,e!1. Then
t0 becomes;1/e@1. Furthermore, in the case ofb.2, we
need ^b2& smaller than unity, while in the case of 1,b
,2, the condition̂ b2&511d with 0,d!1 is necessary. In
,

et
the lat-ter case, we obtaint1;1/(e1d)@1. The exponential
or Poisson distribution forW(b) does not lead to such a lon
time constant. One example of larget1 is obtained by choos-
ing W(b) to be a narrowly peaked distribution having a
average which is slightly smaller than unity and a seco
moment slightly larger than unity.

As pointed out above, it should be noted that a stocha
process whose stationary density function has power
tails will not necessarily exhibit a power law behavior in th
PSD.
@1# P. Bak,How Nature Works~Oxford University Press, Oxford
1997!.
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